Smoke Alarm Detection Technology

(Prepared for CALFIRE 3-28-11)

Agenda

- What is required or recommended?
- Photoelectric Versus Ionization
 - Two Task Groups
 - Final TG Report Findings
 - Combination smoke alarms
 - Nuisance Alarm Criteria
 - Other Reports
 - Escape Scenarios
 - Calculating Tenability
 - Concluding Points

Photo and Ion

- What is required or recommended?
 - NFPA, as an organization, recommends using both technologies in homes
 - NFPA 72 does not generally require the use of one technology over the other
 - Except locations near cooking appliances
 - NFPA 72 does recommend the use of both technologies where there is a desire for a higher level of protection or where individuals need extra time to escape (See A.29.1.1)

Photo and Ion

- What is required or recommended?
 - NFPA 72 requires smoke alarms to be installed in every sleeping room, outside every sleeping area, and on every level (See 29.5.1.1)
 - Many older homes do not have smoke alarms in all of these minimum siting locations
 - NFPA 72 requires all smoke alarms to be interconnected, unless exempted (See 29.5.2.1.1)
 - Smoke alarms are now available with wireless interconnection capability

Photo and Ion

- What is required or recommended?
 - NFPA 72 restricts the installation of any smoke alarm within 10 feet of a fixed cooking appliance (See 29.8.3.4(4))
 - 6 foot exception for smaller homes or apartments
 - No longer 3 feet from kitchen door (2002 code)
 - NFPA 72 restricts the installation of any smoke alarm within 3 feet of a bathroom door (See 29.8.3.4(5))
 - Both technologies are susceptible

Photo Versus Ion

- Which is better?
 - This question has had a long history
 - Informal demonstration fire test videos prompted renewed interest
 - The NFPA 72 Technical Committee on Singleand Multiple-Station Smoke Alarms and Household Fire Alarm Systems appointed a task group to review issues of effectiveness
 - Ultimately two task groups worked over a period of about two years

- Task Group on Minimum Performance Requirements for Smoke Alarm Detection Technology – Report dated February 22, 2008.
- Task Group on Smoke Detection Follow-up
 - Report dated July 1, 2009

- Both task groups reported to the NFPA 72 Technical Committee on Single- and Multiple-Station Alarms and Household Fire Alarm Systems – responsible for Chapter 29 of the 2010 National Fire Alarm and Signaling Code.
- Both reports are available on the NFPA
 Website at www.nfpa.org under "Safety
 Information" / "For Consumers" / "Fire Safety Equipment" / "Smoke Alarms" / "Ionization versus Photoelectric"

- The first task group reported to the technical committee at their Report on Proposals meeting in January 2008 with the results of their work and recommendations for follow-up work.
- Membership on the first task group included technical committee members and other interested parties

- The second task group reported to the technical committee at their Report on Comments meeting in October 2008 with their draft report.
- Membership on the second task group included technical committee members
 - Other parties declined to participate

■ The work of both task groups used the data documented in NIST Technical Note 1455-1 (February 2008), Performance of Home Smoke Alarms — Analysis of the Response of Several Available Technologies in Residential Fire Settings

Final Report Findings

- The second task group assigned two subtask groups
 - Sub-TG on Smoke Alarm Installation Strategy
 - Combination smoke alarm performance
 - Nuisance alarm installation criteria
 - Sub-TG on Performance Follow-up
 - Review of other reports
 - Escape scenarios
 - Methods of calculating tenability

- Photoelectric alarms generally respond faster to smoldering fires than ionization
 - Minutes to tens of minutes (e.g. 1.6 to 40 min)
- Ionization alarms generally respond faster to flaming fires than photoelectric
 - Seconds to tens of seconds (e.g. 20 to 100 sec)
- Time differences depend on fire growth rate
 - Times <u>estimated</u> from SDC 01 thru 15 curves

- Dual photoelectric/ionization smoke alarms offer the advantage both detection technologies in a single unit
- Concern was raised in the initial report that the performance of dual smoke alarms lagged behind that of smoke alarm using individual technology

- The task group reviewed the further work on dual alarms done by NIST
 - "Performance of Dual Photoelectric/Ionization Smoke Alarms in Full Scale Fire Tests" (based on data from NIST TN 1455)
 - http://fire.nist.gov/bfrlpubs/fire09/PDF/f09006.pdf
 - "Results from a Full-Scale Smoke Alarm Sensitivity Study" (based on additional fullscale fire tests)
 - http://fire.nist.gov/bfrlpubs/fire09/PDF/f09007.pdf

- The following conclusions were reached:
 - Dual alarms usually respond before ionization alarms in smoldering fires and before photoelectric alarms in flaming fires
 - Dual alarms are not always less sensitive than individual alarms
 - Alarms using an individual technology may or may not respond before a given dual alarm at the same location for any particular fire

- The following conclusions were reached:
 - Sensitivity of off-the-shelf dual alarms used for comparison were more sensitive than the ionization alarm sensitivities specified in the NIST Home Smoke Alarm report
 - Thus for flaming fires, comparable off-the-shelf dual alarms would not be expected to alarm later than the responses computed for the dual alarms in the NIST Home Smoke Alarm report

- Frequent nuisance alarms can result in occupants disabling smoke alarms
- The task group reviewed available literature on causes for nuisance alarm
 - An extensive review is outlined in the 2008 TG Report with additional review provided in the 2009 TG Report
 - Annex D of the 2009 TG report summarizes the overall findings

- Although photoelectric and ionization smoke alarms are both susceptible to cooking activities, ionization is more susceptible
 - Both types should be restricted from placement near cooking appliances
 - Surveys have found that smoke alarms are often installed in kitchens despite precautions in NFPA 72
 - New restrictions on placement in NFPA 72 2010

- Placement between 10 and 20 feet from cooking appliances
 - Use photoelectric or alarm silencing means
 - Education on the use of the hush feature
 - Trade-off locating smoke alarms that use ionization technology in this zone can result in a higher potential for cooking related nuisance alarms than those using photoelectric technology, but can provide an improved response to flaming fires when compliance with minimum siting criteria requires installation of a smoke alarm in this zone

- Both photoelectric and ionization smoke alarms are susceptible to bathroom steam
 - Ionization smoke alarms are not more susceptible
 - Photoelectric alarms may be more susceptible
 - Placement more than 10 feet from the bathroom door does not appreciably reduce susceptibility
 - No changes with made to the mandatory requirements regarding the 3 foot restriction from bathroom doors. New annex material was added to suggest placement up to 10 feet away if possible

- NFPA 72 -2010
 - Specific requirements related to nuisance alarms from cooking activities and bathroom steam are contained in 29.8.3.4(4) and 29.8.3.4(5) on page 72-159 of the code
 - Detailed explanatory annex material (including installation diagrams) is contained in A.29.8.3.4(4) and A.29.8.3.4(5) on pages 72-259 through 72-262

Other Reports

- California Fire Chiefs Studies
 - Rodin and Graham, 1979
 - Los Angles Fire Department, 1981
 - Either technology provides acceptable warning
- Norway report
 - Meland and Lonvik, 1991
 - UL listed alarms either technology provides acceptable warning

Other Reports

- England Study
 - Kennedy et al
 - Did not use smoke alarms
 - Did not provide correlation between sensor measurements and actual smoke alarms

Escape Scenarios

- NIST 1455-1 report escape scenarios
 - Assumed individuals were not in the room of fire origin
 - Assumed occupants could escape through alternate means of egress (windows)
 - Not aligned with assumptions in NFPA 72
 - See next slide

Escape Scenarios

- NFPA 72 Purpose and Assumptions
 - 29.2 (11.2)* Purpose. Fire-warning equipment for residential occupancies shall provide a reliable means to notify the occupants of the presence of a threatening fire and the need to escape to a place of safety before such escape might be impeded by untenable conditions in the <u>normal path of egress</u>.
 - **29.4.1 (11.4.1) Occupants.** The requirements of this chapter shall assume that occupants are not intimate with the ignition and are capable of self-rescue.
 - **29.4.2.3* (new)** The escape route shall be along the normal path of egress for the occupancy.

Escape Scenarios

- Based on NFPA 72 assumptions, tenability evaluations should assume:
 - Escape through the normal path of egress
 - Individuals can be in the room of fire origin and still not be intimate with ignition
 - Individuals are capable of self-rescue
- Evaluations should further consider individuals that might need assistance in awakening or egress

- NIST 1455-1 report available safe egress times (ASET) were evaluated as the time from the earliest alarm activation to the time when any tenability limit was reached at any location.
 - The first task group observed that tenability calculated on that basis might produce overly pessimistic results since individuals do not necessarily remain in a given (potentially worst case) location

- The second task group formulated a revised evaluation model
 - Calculate tenability based on the integrated exposure for the individual as they moved through the assumed escape path
 - Two assumed escape paths will be used
 - Direct escape path (NFPA 72 assumptions)
 - Indirect escape path (additional travel to awaken others and then escape)
 - See next two slide for assumed paths

Direct Escape Path – Bedroom 1 – Fire in BR 1

Indirect Escape Path – Bedroom 1 – Fire in BR 1

path of occupant where FED was calculated

Direct Escape Path – Bedroom 2 – Fire in LR or Kit

- smoke alarm response
- primary gas analysis
- O temperature
- - path of occupant where FED was calculated

Indirect Escape Path – Bedroom 2 – Fire in LR or Kit

- Tenability Conditions (heat and gas)
 - Evaluated using equations from ISO 13571:2007, Life Threatening Components of Fires – Guidelines on the Estimation of Time Available for Escape Using Fire Data
 - Convective heat 0.30 FED
 - Toxic gas (CO and HCN) 0.30 FED

- Tenability Conditions (heat and gas)
 - FED is fractional effective dose
 - An FED of 1 corresponds to the median value of distribution of human responses – one-half the population more susceptible and one-half less susceptible
 - A FED of 0.3 was used to address the more susceptible occupants of the population
 - Refer to the February 22, 2008 Task Group Report for more detailed presentation

- Tenability Conditions (smoke obscuration)
 - Reduced visibility was not considered an incapacitating condition but was included in the evaluations
 - Some have assumed that occupants will abandon efforts to escape when visibility is reduced even if not overcome by heat or gas
 - What reduced visibility will produce this effect?

- Tenability Conditions (smoke obscuration)
 - An optical density (OD) of 0.22 OD/m was suggested by Jin for safe escape for occupants familiar with a public building
 - An OD of 0.25 OD/m was assumed in the NIST 1455-1 report
 - An OD of 0.43 OD/m was assumed by the task group for residential occupants very familiar with their surroundings
 - Basis in the February 22, 2008 Task Group Report

- Tenability Conditions (smoke obscuration)
 - A value of 0.22 OD/m is estimated to correspond to about 13 ft assuming light reflecting situations (as opposed to light emitting situations)
 - A value of 0.43 OD/m is estimated to correspond to about 6.6 ft assuming light reflecting situations
 - Measurements were taken 5 ft above the floor

- Results of evaluations (July 1, 2009 TG Report)
 - Direct escape cases Tables 2.1a and 2.1b
 - 24 cases total
 - Cases SDC 34, 39 & 40 were not included in my summary for heat, gas and visibility (testing anomalies) – leaves 21
 - Cases SDC 9 & 14 were not included in my summary for visibility (no visibility data) – leaves 19

Table 2.1a - Bedroom 1 Fires, Direct Escape Scenarios from Bedroom 1

Fire In Bedroom				
		Alarm provides sufficient safe egress time		
Flaming		Direct Escape		
Door open		Smoke	Heat	Gas
SDC 5	ION	Υ	Y	Υ
	PHOTO	Υ	Υ	Υ
SDC 7	ION	Υ	Υ	Υ
	РНОТО	Υ	Y	Υ
SDC 38	ION	Υ	Y	Υ
	PHOTO	N	Υ	Υ
SDC 39 ²	ION	-	-	-
	РНОТО	N	-	-
Smoldering				
door closed			1	
SDC 14 ¹	ION	-	N	Υ
	PHOTO	-	Υ	Υ
Flaming				
door closed			,	
SDC 9 ¹	ION	-	Y	Υ
	PHOTO	-	Y	Υ
SDC 36	ION	Υ	Y	Υ
	PHOTO	Υ	Y	Υ
Smoldering				
door open				
SDC 4	ION	Υ	Y	Υ
	PHOTO	Y	Y	Υ
SDC 6	ION	N	Y	Υ
	PHOTO	Υ	Y	Υ
SDC 8	ION	Υ	Y	Υ
	PHOTO	Υ	Y	Υ
SDC 37	ION	Υ	Y	Υ
	PHOTO	Υ	Y	Υ
SDC 40 ³	ION	-	-	-
	РНОТО	Υ	Y	Υ

Table 2.1b – Living Room and Kitchen Fires, Direct Escape Scenarios from Bedroom 2

Fire in Living room				
		Alarm provides sufficient safe egress time		
			Direct Escape	
Smoldering		Smoke	Heat	Gas
SDC 1	ION	Υ	Υ	Υ
	PHOTO	Υ	Υ	Υ
SDC 11	ION	N	Υ	Υ
	PHOTO	N	Υ	Υ
SDC 31	ION	N	Υ	Υ
	PHOTO	N	Υ	Υ
SDC 34 ¹	ION	-	-	-
	РНОТО	-	-	-
Flaming				
SDC 2	ION	Υ	Υ	Υ
	РНОТО	Υ	Υ	Υ
SDC 10	ION	Υ	Υ	Υ
	РНОТО	N	Υ	Υ
SDC 12	ION	Υ	Υ	Υ
	РНОТО	Υ	Υ	Υ
SDC 13	ION	Y	Υ	Υ
	РНОТО	Υ	Υ	Υ
SDC 15	ION	Υ	Υ	Υ
	РНОТО	Y	Υ	Υ
SDC 33	ION	Υ	Υ	Υ
	РНОТО	Υ	Υ	Υ
SDC 35	ION	Υ	Υ	Υ
	РНОТО	Y	Υ	Υ
SDC 41	ION	Y	Υ	Υ
¹ Toot stanned has	РНОТО	Υ	Υ	Υ

¹Test stopped before escapes times were attained

¹No smoke measurement in room of origin ²Test stopped before escapes times were attained ³No ionization alarms available in bedrooms or corridors

- Results of evaluations
 - Direct escape <u>heat and gas exposure</u>
 - In all 21 cases with both photoelectric and ionization alarms present sufficient safe egress time was provided
 - In 20 out of 21 cases both the photoelectric and ionization alarms individually provided sufficient safe egress time
 - In 1 smoldering fire case the ionization alarm did not provide sufficient safe egress time – exceeded heat exposure FED (bedroom door closed)

- Results of evaluations
 - Direct escape <u>smoke obscuration</u>
 - In 17 out of 19 cases with both photoelectric and ionization alarms present sufficient safe egress time was provided
 - In 14 out 19 cases both the photoelectric and ionization alarms individually provided sufficient safe egress time
 - Continued next slide

- Results of evaluations
 - Direct escape smoke obscuration
 - In 2 <u>flaming fire cases</u>, the photoelectric alarms did not provide sufficient safe egress time
 - In 1 <u>smoldering fire case</u>, the ionization alarm did not provide sufficient safe egress time
 - In 2 <u>smoldering fire cases</u>, neither the photoelectric or ionization alarm provided sufficient safe egress time

- Results of evaluations (July 1, 2009 TG Report)
 - Indirect escape cases Tables 2.2a and 2.2b
 - 24 cases total
 - Cases SDC 33, 34, 35, 39 & 40 were not included in my summary for heat, gas and visibility (testing anomalies) – leaves 19
 - Cases SDC 9 & 14 were not included in my summary for visibility (no visibility data) – leaves 17

Table 2.2a - Bedroom 1 Fires, Indirect Escape Scenarios from Bedroom 1

Fire In Bedroon	n				
	•	Alarm provides sufficient safe egress time			
Flaming			direct Escape		
Door open		Smoke	Heat	Gas	
SDC 5	ION	Y	Y	Y	
2DC 2		Y	Y	Υ	
SDC 7	PHOTO ION	Y	Y	Y	
	1	N	Y	Υ	
SDC 38	PHOTO	Y	Y	Y	
SDC 38	ION				
ODO 202 ²	PHOTO	N	Y	Y	
SDC 39 ²	ION	-	-	-	
	PHOTO	N	-	-	
Smoldering					
door closed	 				
SDC 14 ¹	ION	-	N	N	
	РНОТО	-	Υ	Y	
Flaming					
door closed					
SDC 9 ¹	ION	-	Y	Y	
	PHOTO	-	N	Y	
SDC 36	ION	N	Υ	Y	
	РНОТО	N	N	Υ	
Smoldering					
door open	_				
SDC 4	ION	N	Υ	Υ	
	PHOTO	Y	Υ	Υ	
SDC 6	ION	N	Υ	Υ	
	PHOTO	N	Υ	Υ	
SDC 8	ION	Ν	Υ	Υ	
	РНОТО	Υ	Υ	Υ	
SDC 37	ION	Υ	Υ	Υ	
	РНОТО	Y	Υ	Υ	
SDC 40 ³	ION	-	-	-	
	РНОТО	Υ	Υ	Υ	

<u>Table 2.2b – Living Room and Kitchen Fires, Indirect Escape Sce</u>narios from Bedroom 2

Fire in Living	room				
			Alarm provides sufficient safe egress time		
		lı	ndirect Escape	9	
Smoldering		Smoke	Heat	Gas	
SDC 1	ION	Y	Υ	Υ	
	PHOTO	Υ	Υ	Υ	
SDC 11	ION	N	Υ	Υ	
	PHOTO	N	Υ	Υ	
SDC 31	ION	N	Υ	Υ	
	PHOTO	N	Υ	Υ	
SDC 34 ¹	ION	-	-	-	
	PHOTO	-	-	-	
Flaming					
SDC 2	ION	Υ	Υ	Υ	
	PHOTO	N	Υ	Υ	
SDC 10	ION	N	Y	Υ	
	PHOTO	N	N	N	
SDC 12	ION	Υ	Υ	Υ	
	PHOTO	Y	Υ	Υ	
SDC 13	ION	Y	Y	Υ	
	PHOTO	Υ	Y	Υ	
SDC 15	ION	Υ	Y	Υ	
	PHOTO	Υ	Y	Υ	
SDC 33	ION	Υ	Y	Υ	
	PHOTO ¹	-	-	-	
SDC 35	ION	Y	Y	Υ	
	PHOTO ¹	-	-	-	
SDC 41	ION	Y	Υ	Υ	
	РНОТО	Y	Υ	Υ	

¹Test stopped before escapes times were attained

¹No smoke measurement in room of origin ²Test stopped before escapes times were attained ³No ionization alarms available in bedrooms or corridors

- Results of evaluations
 - Indirect escape heat and gas exposure
 - In all 19 cases with both photoelectric and ionization alarms present sufficient safe egress time was provided
 - In 15 out of 19 cases both the photoelectric and ionization alarms individually provided sufficient safe egress time
 - Continued next slide

- Results of evaluations
 - Indirect escape heat and gas exposure
 - In <u>2 flaming fire cases</u>, the photoelectric alarm did not provide sufficient safe egress time exceeded heat exposure FED (bedroom door closed)
 - In <u>1 flaming fire case</u>, the photoelectric alarm did not provide sufficient safe egress time – exceeded heat and gas exposure FED
 - In 1 <u>smoldering fire case</u>, the ionization alarm did not provide sufficient safe egress time – exceeded heat and gas exposure FED (bedroom door closed)

- Results of evaluations
 - Indirect escape smoke obscuration
 - In 12 out of the 17 cases with both photoelectric and ionization alarms present sufficient safe egress time was provided
 - In 7 out 17 cases both the photoelectric and ionization alarms individually provided sufficient safe egress time
 - Continued next slide

- Results of evaluations
 - Indirect escape smoke obscuration
 - In 3 <u>flaming fire cases</u>, the photoelectric alarms did not provide sufficient safe egress time
 - In 2 <u>flaming fire cases</u>, neither the photoelectric or ionization alarm provided sufficient safe egress time
 - In 2 <u>smoldering fire cases</u>, the ionization alarm did not provide sufficient safe egress time
 - In 3 <u>smoldering fire cases</u>, neither the photoelectric or ionization alarm provided sufficient safe egress time

- Results of evaluations
 - TG majority consensus
 - The response to <u>direct escape</u> scenarios was adequate for either technology
 - Possible exception: fires in bedrooms with doors closed
 - Neither technology appears to offer an advantage for nonspecific fires
 - For <u>indirect escape</u> scenarios the use of both technologies is a definite benefit and is recommended
 - Where more time is needed to awaken and/or assist others

- Results of evaluations
 - TG minority opinion
 - Annex C of final TG report
 - Recommended requiring both technologies in bedrooms
 - Bedroom locations benefit most from using both technologies
 - Photoelectric only 67%, ionization only 71%, both 92%
 - Assumes both direct and indirect cases, smoke, heat & gas
 - Improvement using both technologies in other locations not significant

- Exclusion of ionization technology
 - The need for protection from both smoldering and flaming fires is fundamental
 - Excluding ionization technology ignores the benefits of using of both types together
 - Photo and ion individually or combination photo/ion

- Restricting ionization technology within 20 ft of kitchen doors
 - Basis for 20 ft from kitchen door?
 - Ignores the benefits of using both technologies together beyond 20 ft of cooking appliances

- Restricting ionization technology within 20 ft of bathroom doors
 - Basis for 20 ft from bathroom door?
 - Photoelectric technology is not less susceptible to bathroom steam
 - There is little benefit of restricting either type beyond 10 feet of bathroom doors
 - Ignores the benefits of using both types together in most bedrooms

- Smoke alarm installations
 - All homes (regardless of age) should have smoke alarms installed in the minimum siting locations prescribed in NFPA 72
 - Outside each sleeping area
 - On every level
 - Inside every sleeping room
 - All home smoke alarms should be interconnected
 - Especially important for larger homes

Thank you

